Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Environ Radioact ; 275: 107430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615506

RESUMO

Clay colloids in the subsurface environment have a strong adsorption capacity for radionuclides, and the mobile colloids will carry the nuclides for migration, which would promote the movability of radionuclides in the groundwater environment and pose a threat to the ecosphere. The investigations of the adsorption/desorption behaviors of radionuclides in colloids and porous media are significant for the evaluation of the geological disposal of radioactive wastes. To illustrate the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand systems at different pH (5, 7 and 9), ionic strengths (0, 0.1 and 5 mM), colloid concentrations (300 and 900 mg/L), nuclide concentrations (500, 800, 1100 and 1400 Bq/mL) and grain sizes (40 and 60 mesh), a series of batch sorption-desorption experiments were conducted. Combining the analysis of the physical and chemical properties of Na-montmorillonite with the Freundlich model, the influencing mechanism of different controlling factors is discussed. The experimental results show that the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand strongly are influenced by the pH value and ionic strength of a solution, the colloid concentration as well as quartz sand grain size. The adsorption and desorption isotherms within all the experimental conditions could be well-fitted by the Freundlich model and the correlation coefficients (R2) are bigger than 0.9. With the increase in pH, the adsorption partition coefficient (Kd) at 241Am(Ⅲ)-Na-montmorillonite colloid two-phase system and 241Am(Ⅲ)-Na-montmorillonite colloid-quartz sand three-phase system presents a trend which increases firstly followed by decreasing, due to the changes in the morphology of Am with pH. The Kd of 241Am(Ⅲ) adsorption on montmorillonite colloid and quartz sand decreases with increasing in ionic strength, which is mainly attributed to the competitive adsorption, surface complexation and the reduction of surface zeta potential. Additionally, the Kd increases with increasing colloid concentrations because of the increase in adsorption sites. When the mean grain diameter changes from 0.45 to 0.3 mm, the adsorption variation trends of 241Am(Ⅲ) remain basically unchanged. The research results obtained in this work are meaningful and helpful in understanding the migration behaviors of radionuclides in the underground environment.


Assuntos
Amerício , Bentonita , Coloides , Quartzo , Bentonita/química , Concentração Osmolar , Adsorção , Concentração de Íons de Hidrogênio , Coloides/química , Quartzo/química , Amerício/química , Amerício/análise , Poluentes Radioativos da Água/química , Poluentes Radioativos da Água/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Modelos Químicos , Tamanho da Partícula , Areia/química
2.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298746

RESUMO

Soil can be contaminated by pesticide residues through agricultural practices, by direct application or through spray-drift in cultivations. The dissipation of those chemicals in the soil may pose risks to the environment and human health. A simple and sensitive multi-residue analytical method was optimized and validated for the simultaneous determination of 311 active substances of pesticides in agricultural soils. The method involves sample preparation with QuEChERS-based extraction, and determination of the analytes with a combination of GC-MS/MS and LC-MS/MS techniques. Calibration plots were linear for both detectors over the range of five concentration levels, using matrix-matched calibration standards. The obtained recoveries from fortified-soil samples ranged from 70 to 119% and from 72.6 to 119% for GC-MS/MS and LC-MS/MS, respectively, while precision values were <20% in all cases. As regards the matrix effect (ME), signal suppression was observed in the liquid chromatography (LC)-amenable compounds, which was further estimated to be negligible. The gas chromatography (GC)-amenable compounds showed enhancement in the chromatographic response estimated as medium or strong ME. The calibrated limit of quantification (LOQ) value was 0.01 µg g-1 dry weight for most of the analytes, while the corresponding calculated limit of determination (LOD) value was 0.003 µg g-1 d.w. The proposed method was subsequently applied to agricultural soils from Greece, and positive determinations were obtained, among which were non-authorized compounds. The results indicate that the developed multi-residue method is fit for the purpose of analyzing low levels of pesticides in soil, according to EU requirements.


Assuntos
Resíduos de Praguicidas , Praguicidas , Cromatografia Gasosa , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise , Areia/química , Solo , Espectrometria de Massas em Tandem/métodos
3.
Environ Geochem Health ; 45(7): 4389-4406, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36808374

RESUMO

Urban surface deposited sediments (USDS) are unique indicators of local pollution that pose a potential threat to the living environment and human health. Ekaterinburg is a highly populated metropolitan area in Russia with rapid urbanization and industrialization activities. In Ekaterinburg's residential areas, about 35, 12, and 16 samples are represented by green zones, roads, driveways, and sidewalks, respectively. The total concentrations of heavy metals was detected using a chemical analyzer inductively coupled plasma mass spectrometry (ICP-MS). Zn, Sn, Sb, and Pb have the highest concentrations in the green zone, while V, Fe, Co, and Cu represent the utmost values on roads. Moreover, Mn and Ni are the prevailing metals in the fine sand fraction of driveways along with sidewalks. Broadly, the high pollution in the studied zones is generated by anthropogenic activities and traffic emissions. The potential ecological risk (RI) was observed in high risk (IR > 600), even though the results of all heavy metals reveal no adverse health effects from the considered noncarcinogenic metal for adults and children by different exposure pathways except the children's exposure to Co in case of the dermal contact, where the HI values of Co for children in the studied zones are higher than the proposed level (> 1). In all urban zones, the total carcinogenic risk (TLCR) values are predicted as a high potential inhalation exposure.


Assuntos
Monitoramento Ambiental , Metais Pesados , Areia , Adulto , Criança , Humanos , China , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , Areia/química , Urbanização
4.
Environ Sci Process Impacts ; 24(12): 2368-2377, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36317984

RESUMO

The current state of knowledge on the transport behaviors of oxytetracycline (OTC, a typical tetracycline antibiotic) in porous media with heterogeneous chemical surfaces is inadequate. In this work, the mobility properties of OTC through saturated porous media with different chemical heterogeneities (i.e., quartz sand, montmorillonite (MMT)-, humic acid (HA)-, and goethite (Goe)-coated sands) were investigated. In comparison with the mobility of OTC in the quartz sand, HA and goethite coatings inhibited the mobility of OTC, whereas montmorillonite coating enhanced OTC mobility. HA coating inhibited the transport of OTC that stemmed from the strong interactions between HA and OTC via complexation, π-π stacking, hydrogen bonding, and hydrophobic interaction. The positively charged iron oxide coating on Goe-coated sand provided favorable sites for OTC deposition through complexation and electrostatic attraction. The enhanced transport of OTC through MMT-coated sand was mainly due to the strong electrostatic repulsion between the anionic OTC species (i.e., OTC-) and negatively charged porous media. Solution pH (5.0-9.0) posed a negligible effect on the trend of OTC mobility in different porous media. Furthermore, Ca2+ inhibited the transport of OTC mobility through various porous media via cation-bridging. The findings of this work contribute significantly to our understanding of the influence of aquifer surface chemical heterogeneities on OTC mobility behaviors in the subsurface environment.


Assuntos
Oxitetraciclina , Porosidade , Quartzo/química , Bentonita/química , Dióxido de Silício , Areia/química , Substâncias Húmicas
5.
PLoS One ; 17(7): e0270237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793287

RESUMO

Plastic pollution of the oceans has long been an ongoing and growing problem. Single-use plastic (plastic bags and microbeads) is responsible for most of this pollution. In recent years, studies have highlighted the importance of the size of plastic particles, and the impact of this pollution source on the environment. We determined the concentration of small marine plastics in seawater, sediments and beach sand around a pristine reef area (Republic of Palau) using very simple tools (plankton net, sieves, organic matter degradation, density separation, Nile red fluorochrome). In this study, we succeeded in detecting microplastic (MPs) particles and microplastic fibers, but also nanoplastic (NPs). These three types of particles were found in all samples with a large heterogeneity, from 0.01 to 0.09 particles L-1 and 0.17 to 32.13 particles g-1 DW for MPs in seawater, sediments and sand, respectively. Even when NPs were identified, the amounts of NPs were underestimated and varied from 0.09 to 0.43 particles L-1 in seawater and from 1.08 to 71.02 particles g-1 DW in sediment and sand, respectively. These variations could be attributed to the environmental characteristics of the different sites. This study shows that plastic pollution must be considered in environmental studies even in the most pristine locations. It also shows that NPs pollution is related to the amount of MPs found at the sites. To understand the effects of this plastic pollution, it is necessary that the next toxicological studies take into account the effects of this fraction that makes up the NPs.


Assuntos
Recifes de Corais , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Praias , Sedimentos Geológicos/química , Microplásticos/análise , Microplásticos/toxicidade , Palau , Tamanho da Partícula , Areia/química , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Pollut Res Int ; 29(54): 82584-82599, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35752673

RESUMO

This work studies the degradation of chlortetracycline hydrochloride (CTC) by activated peroxymonosulfate (PMS) with natural manganese sand (NMS). Meanwhile, the NMS was characterized and analyzed by isothermal nitrogen adsorption (BET), energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscope (SEM). It can be induced that NMS material may contain C, O, Al, Si, Fe, Mn, and K, and the proportion of each is 6%, 9%, 13%, 34%, 27%, 5%, and 6%. Critical parameters, including initial pH value, catalyst dosage, and PMS amount, were optimized through response surface methodology. One of the essential significances of response surface methodology (RSM) is the establishment and optimization of the mathematical model to reduce the complexity of the experimental process. It can provide the degree of mutual influence between various factors and optimize the response based on the investigated factors. Results indicated that 81.65% of CTC could be degraded under the optimized conditions of PMS amount 2.02 g/L, the NMS dosage 0.29 g/L and pH 3.87. Also, it shows that NMS is the most powerful of each factor on the degradation efficiency. We proposed the degradation pathways of CTC from the liquid chromatograph-mass spectrometer (LC-MS) results. Therefore, NMS could be applied as an efficient activator of peroxymonosulfate to purify the water and wastewater.


Assuntos
Clortetraciclina , Peróxidos , Areia , Purificação da Água , Clortetraciclina/química , Manganês , Peróxidos/química , Areia/química , Águas Residuárias/química , Água/química , Purificação da Água/métodos
7.
Environ Monit Assess ; 194(6): 448, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604473

RESUMO

Coastal habitats provide important ecosystem services, such as the maintenance of ecological sustainability, water quality regulation, nutrient recycling, and sandy beaches which are important areas for recreation and tourism. The quality of seawater is generally measured by determining the concentrations of Escherichia coli and intestinal Enterococci, which might be affected by the persistent populations of these bacteria in sand. Sand might thus be a significant source of pathogen exposure to beachgoers. The quality of coastal recreational waters can also be affected by eutrophication, water discoloration, and harmful algal blooms, which pose additional human health risks. Here, we conducted a monitoring of the beaches quality along the Taranto Gulf by determining the concentrations of fecal indicator organisms, as well as other parameters that are not traditionally measured (physicochemical parameters, Pseudomonas aeruginosa, and harmful microalgae), in shallow seawater and sand sampled from three beaches. The concentrations of bacteria were determined using both standard microbiological methods and the IDEXX system. Our results demonstrate the utility of measuring a greater number of parameters in addition to those conventionally measured, as well as the importance of assessing the health risks posed by the sand matrix. Additional work is needed to develop rapid analytical techniques that could be used to monitor the microbiological parameters of solid matrices.


Assuntos
Praias , Monitoramento Ambiental , Areia , Água do Mar , Bactérias/isolamento & purificação , Praias/normas , Ecossistema , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação , Humanos , Itália , Microalgas/isolamento & purificação , Areia/química , Areia/microbiologia , Água do Mar/química , Água do Mar/microbiologia , Microbiologia da Água/normas , Qualidade da Água/normas
8.
Biomolecules ; 11(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944515

RESUMO

This study revealed the underlying mechanisms involved in the puffing process of dried cassava starch gel by exploring the development of the puffed structure of gel upon sand-frying, chiefly focused on the changes in the multi-scale structure and the physicochemical properties of starch. The results suggested that the sand-frying-induced puffing proceeded very fast, completed in about twenty seconds, which could be described as a two-phase pattern including the warming up (0~6 s) and puffing (7~18 s) stages. In the first stage, no significant changes occurred to the structure or appearance of the starch gel. In the second stage, the cells in the gel network structure were expanded until burst, which brought about a decrease in moisture content, bulk density, and hardness, as well as the increase in porosity and crispness when the surface temperature of gel reached glass transition temperature of 125.28 °C. Upon sand-frying puffing, the crystalline melting and molecular degradation of starch happened simultaneously, of which the latter mainly occurred in the first stage. Along with the increase of puffing time, the thermal stability, peak viscosity, and final viscosity of starch gradually decreased, while the water solubility index increased. Knowing the underlying mechanisms of this process might help manufacturers produce a better quality of starch-based puffed products.


Assuntos
Manihot/química , Areia/química , Amido/química , Temperatura Alta , Estrutura Molecular , Solubilidade , Viscosidade
9.
Molecules ; 26(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684789

RESUMO

The use of additives has generated significant attention due to their extensive application in the microbially induced calcium carbonate precipitation (MICP) process. This study aims to discuss the effects of Na-montmorillonite (Na-MMT) on CaCO3 crystallization and sandy soil consolidation through the MICP process. Compared with the traditional MICP method, a larger amount of CaCO3 precipitate was obtained. Moreover, the reaction of Ca2+ ions was accelerated, and bacteria were absorbed by a small amount of Na-MMT. Meanwhile, an increase in the total cementing solution (TCS) was not conducive to the previous reaction. This problem was solved by conducting the reaction with Na-MMT. The polymorphs and morphologies of the CaCO3 precipitates were tested by using X-ray diffraction and scanning electron microscopy. Further, when Na-MMT was used, the morphology of CaCO3 changed from an individual precipitate to agglomerations of the precipitate. Compared to the experiments without Na-MMT in the MICP process, the addition of Na-MMT significantly reduced the hydraulic conductivity (HC) of sandy soil consolidated.


Assuntos
Bentonita/metabolismo , Carbonato de Cálcio/metabolismo , Sporosarcina/metabolismo , Bentonita/química , Biotecnologia , Carbonato de Cálcio/isolamento & purificação , Precipitação Química , Cristalização , Microscopia Eletrônica de Varredura , Areia/química , Solo/química , Sporosarcina/crescimento & desenvolvimento , Difração de Raios X
10.
PLoS One ; 16(10): e0258813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34673794

RESUMO

The strain-softening and dilatancy behavior of soft rock is affected by the loading history and the development of structure. This study regards soft rock as a structured and overconsolidated soil and develops a new elastoplastic model based on the classical super yield surface Cam-clay model. The proposed model is capable of capturing the effect of yield surface shape on the mechanical behavior of soft rock by introducing a new yield function. The proposed model is validated against the triaxial test results on different types of soft rocks under drained condition. The comparison results indicate that the proposed model is suitable for describing the constitutive behavior of soft rock.


Assuntos
Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Modelos Teóricos , Areia/química , Solo/química
11.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361826

RESUMO

Vertical translocation/leaching of sulfamethoxazole (SMZ) through manure-amended sandy loam soil and significance of biochar application on SMZ retention were investigated in this study. Soil was filled in columns and amended with manure spiked with 13.75 mg kg-1 (S1), 27.5 mg kg-1 (S2), and 55 mg kg-1 (S3) of SMZ. Jujube (Ziziphus jujube L.) wood waste was transformed into biochar and mixed with S3 at 0.5% (S3-B1), 1.0% (S3-B2), and 2.0% (S3-B3) ratio. Cumulative SMZ leaching was lowest at pH 3.0, which increased by 16% and 34% at pH 5.0 and 7.0, respectively. A quicker release and translocation of SMZ from manure occurred during the initial 40 h, which gradually reduced over time. Intraparticle diffusion and Elovich kinetic models were the best fitted to leaching data. S3 exhibited the highest release and vertical translocation of SMZ, followed by S2, and S1; however, SMZ leaching was reduced by more than twofold in S3-B3. At pH 3.0, 2.0% biochar resulted in 99% reduction in SMZ leaching within 72 h, while 1.0% and 0.5% biochar applications reduced SMZ leaching to 99% within 120 and 144 h, respectively, in S3. The higher SMZ retention onto biochar could be due to electrostatic interactions, H-bonding, and π-π electron donor acceptor interactions.


Assuntos
Carvão Vegetal/química , Esterco/análise , Areia/química , Poluentes do Solo/metabolismo , Sulfametoxazol/metabolismo , Madeira/química , Irrigação Agrícola , Poluentes do Solo/análise , Sulfametoxazol/análise
12.
PLoS One ; 16(7): e0254676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270610

RESUMO

Microbially Induced Carbonate Precipitation (MICP) is currently viewed as one of the potential prominent processes for field applications towards the prevention of soil erosion, healing cracks in bricks, and groundwater contamination. Typically, the bacteria involved in MICP manipulate their environment leading to calcite precipitation with an enzyme such as urease, causing calcite crystals to form on the surface of grains forming cementation bonds between particles that help in reducing soil permeability and increase overall compressive strength. In this paper, the main focus is to study the MICP performance of three indigenous landfill bacteria against a well-known commercially bought MICP bacteria (Bacillus megaterium) using sand columns. In order to check the viability of the method for potential field conditions, the tests were carried out at slightly less favourable environmental conditions, i.e., at temperatures between 15-17°C and without the addition of urease enzymes. Furthermore, the sand was loose without any compaction to imitate real ground conditions. The results showed that the indigenous bacteria yielded similar permeability reduction (4.79 E-05 to 5.65 E-05) and calcium carbonate formation (14.4-14.7%) to the control bacteria (Bacillus megaterium), which had permeability reduction of 4.56 E-5 and CaCO3 of 13.6%. Also, reasonably good unconfined compressive strengths (160-258 kPa) were noted for the indigenous bacteria samples (160 kPa). SEM and XRD showed the variation of biocrystals formation mainly detected as Calcite and Vaterite. Overall, all of the indigenous bacteria performed slightly better than the control bacteria in strength, permeability, and CaCO3 precipitation. In retrospect, this study provides clear evidence that the indigenous bacteria in such environments can provide similar calcite precipitation potential as well-documented bacteria from cell culture banks. Hence, the idea of MICP field application through biostimulation of indigenous bacteria rather than bioaugmentation can become a reality in the near future.


Assuntos
Carbonato de Cálcio/química , Microbiota , Microbiologia do Solo , Bacillus/metabolismo , Carbonato de Cálcio/metabolismo , Precipitação Química , Conservação dos Recursos Naturais/métodos , Areia/química , Areia/microbiologia , Solo/química
13.
Nat Commun ; 12(1): 3037, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031392

RESUMO

Microbialites accrete where environmental conditions and microbial metabolisms promote lithification, commonly through carbonate cementation. On Little Ambergris Cay, Turks and Caicos Islands, microbial mats occur widely in peritidal environments above ooid sand but do not become lithified or preserved. Sediment cores and porewater geochemistry indicated that aerobic respiration and sulfide oxidation inhibit lithification and dissolve calcium carbonate sand despite widespread aragonite precipitation from platform surface waters. Here, we report that in tidally pumped environments, microbial metabolisms can negate the effects of taphonomically-favorable seawater chemistry on carbonate mineral saturation and microbialite development.


Assuntos
Compostos de Cálcio/química , Ecossistema , Óxidos/química , Areia/química , Areia/microbiologia , Carbonato de Cálcio/metabolismo , Carbonatos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota , Minerais , Água do Mar/química , Água do Mar/microbiologia , Índias Ocidentais
14.
PLoS One ; 16(4): e0250466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901240

RESUMO

Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model's reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.


Assuntos
Lógica Fuzzy , Modelos Teóricos , Campos de Petróleo e Gás/química , Areia/química , Estatística como Assunto , Estresse Mecânico , Fatores de Tempo
15.
ScientificWorldJournal ; 2021: 6621645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679259

RESUMO

In this study, the activity concentration levels of 238U, 232Th, and 40K in sand samples collected from Shanzu, Nyali, Kenyatta, Tiwi, Shelly, and Diani beaches selected along the Kenyan coastline were determined using a gamma ray spectrometer with a NaI(Tl) detector. The average activity concentrations of 238U, 232Th, and 40K in sand samples were analyzed as 87 ± 4, 98 ± 4, and 1254 ± 62 Bq/kg, respectively. Also, radium equivalent (Raeq) activity and internal (H in) and external (H ex) hazard index were calculated to assess the radiological hazards associated with the use of sand samples as building materials. The average values of Raeq, H in, and H ex were found as 327 ± 16 Bq/kg, 0.98, and 0.72, respectively. The average values of outdoor and indoor annual effective dose rates were estimated as of 0.23 and 0.63 mSv/y, respectively, which are below maximum recommended limit of 1 mSv/y. Generally, these results indicate no significant radiological health hazards for the studied beaches.


Assuntos
Praias/tendências , Areia/química , Poluentes Radioativos do Solo/isolamento & purificação , Raios gama , Humanos , Quênia/epidemiologia , Doses de Radiação , Monitoramento de Radiação , Poluentes Radioativos do Solo/química , Espectrometria gama
16.
Artigo em Inglês | MEDLINE | ID: mdl-33560900

RESUMO

Removal of hexavalent chromium [Cr(VI)] from water was evaluated using a low-cost coated sand adsorbent for potential application in a flow-through filter system using permeable adsorption media. Manganese-aluminum coated sand (MACS) was investigated as a hybrid metal oxide based adsorbent due to the potential efficacy of manganese oxide and aluminum oxide for adsorption of Cr(VI) from water. Adsorbent characterization was performed using XRD, SEM/EDX, XPS and BET. Adsorption experiments were performed to determine adsorption capacity and kinetics. The effect of pH, common co-existing ions found in natural water, and the recyclability of adsorbent were investigated. Adsorbent characterization showed that the MACS sorbent contained aluminum oxide, manganese (III) oxide and manganese (IV) oxide. Adsorption followed the Langmuir and Freundlich adsorption equations, indicating favorable adsorption of Cr(VI) onto the MACS sorbent, while results from the Dubinin-Radushkevich equation were suggestive of physical adsorption of Cr(VI). Cr(VI) adsorption onto the MACS sorbent followed pseudo-second order kinetics. The adsorbent was effective in removing Cr(VI) over a broad pH range from 3 to 9.5, while surface charge analysis confirmed the adsorption of Cr(VI) onto the acidic surface of the MACS sorbent with a pHPZC of 9.72. The presence of co-existing ions bicarbonate, sulfate and phosphate in water resulted in a decrease in Cr(VI) uptake in the following order: phosphate > bicarbonate > sulfate. The presence of calcium resulted in a slight increase in Cr(VI) uptake. The MACS sorbent is a recyclable sorbent for adsorption and removal of Cr(VI) from water within 30 minutes of contact time.


Assuntos
Alumínio/química , Cromo/química , Manganês/química , Areia/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Compostos de Manganês/química , Concentração Osmolar , Óxidos/química
17.
Ecotoxicol Environ Saf ; 208: 111674, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396006

RESUMO

With the increase of development and utilization of coastal tidal flats, the desertification of intertidal zone is becoming more and more serious, which will inevitably lead to changes in the distribution and migration of heavy metals. This study reported the multiphase distribution and solid-liquid partitioning of Cr, Ni, Cu, Zn, Pb and Cd in typical sandy intertidal zones and predicted the migration of heavy metals with stepwise multiple linear regression. The distribution of heavy metals in surface water was comparable with that in pore water, while the content of heavy metals in suspended solids was obviously greater than that in sediments. Compared to non-sandy sediments, the bioavailability state of heavy metals extracted from sandy sediments by diethylene triamine penta-acetic acid was much smaller. The mean partitioning coefficient values (Kd) ranged from 21.56 to 166.18, which were 10-40 times lower than those of organic-rich sediments and 100-750 times lower than those of mineral soils. The dynamics in solid clay, SOC and ORP greatly affected the variations of Kd values. Clay had a significant positive correlation with bioavailability but did not have a significant correlation with logKd, indicating that the adsorption capacity of heavy metals in the intertidal zone is not the only factor controlling heavy metal migration. Stepwise multiple linear regression analysis confirmed that the prediction equations of heavy metals are composed of multiple physicochemical factors. All predicted and tested values were of the same order of magnitude, with R2 values ranging from 0.8223 to 0.9775. Although our data focus on a single species of sandy intertidal zone, characterizing the Kd value and its relationship with site-specific factors provides different tools for assessing the probability of heavy metal contamination and migration in sandy intertidal zones.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Rios/química , Areia/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , China , Sedimentos Geológicos/química , Solo/química
18.
PLoS One ; 16(1): e0245365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434231

RESUMO

The main forms of poly-γ-glutamic acid (γ-PGA) applied in agriculture include agricultural γ-PGA and γ-PGA super absorbent polymer (SAP). Laboratory experiments were conducted with a check treatment CK (no γ-PGA added) and two different forms of γ-PGA added to sandy loam soil (T and TM stand for γ-PGA and γ-PGA SAP) at four different soil mass ratios (0.05% (1), 0.10% (2), 0.15% (3) and 0.20% (4)) to determine their effects on sandy loam soil hydro-physical properties. Both of them could reduce the cumulative infiltration of soil water. The total available water (TAW) which the soil water content (SWC) from field water capacity (FC) to permanent wilting point (PWP) after γ-PGA added into sandy loam soil had no significant different compared with CK, and the TAW was highest at the treatment of γ-PGA with 0.10% addition amount into sandy loam soil. However, the TAW of sandy loam soil increased dramatically with the γ-PGA SAP addition amount increasing. TM3 had the highest soil water absorption among the treatments with γ-PGA SAP. The T1 to T4 treatments with γ-PGA addition slightly prolonged retention time (RT) when SWC varied from FC to PWP compared with CK. For γ-PGA SAP addition treatments, the time for SWC varied from FC to PWP was 1.48 times (TM1), 1.88 times (TM2), 2.01 times (TM3) and 2.87 times (TM4) longer than that of CK, respectively. The results of this study will provide further information for the use of these materials in agricultural application.


Assuntos
Ácido Poliglutâmico/análogos & derivados , Polímeros/química , Solo/química , Água/química , Adsorção , Agricultura , Ácido Poliglutâmico/química , Areia/química
19.
Carbohydr Polym ; 256: 117429, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483018

RESUMO

An eco-friendly dust suppression and sand-fixation liquid mulching film was prepared via a facile secondary spraying process in this work. Water polyurethane (WPU) was blended with dissolved humic acid (HA) firstly, and then the blend solutions (HWPU) were sprayed on the surface of cationic starch (CS) / sodium lignosulfonate (LS) film to synthesize the liquid mulching film (CLS-HWPU). The effects of liquid mulching film composition on mechanical properties in dry and wet states were investigated. The results showed that the optimal composition of liquid mulching film was: 3% (CS), 0.9 % (LS), 1.5 % (glycerol), 2% (HA), and 30 % (WPU). The CLS-HWPU liquid mulching films were characterized in terms of light transmittance, degradation performance test, contact angle test, scanning electron microscopy (SEM), total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), thermo gravimetric analysis (TGA), and erosion resistance test. The results indicated that the CLS-HWPU film had good UV resistance, thermal stability, anti-erosion, and biodegradation. The CLS-HWPU film meets the demand of dust suppression and sand-fixation in dusty areas and desertification environments, which opens a new application field for liquid mulching film with high safety and environmental protection.


Assuntos
Poliuretanos/química , Areia/química , Solo/química , Água/química , Biodegradação Ambiental , Cátions , Poeira , Eletrólitos , Eletrônica , Glicerol/química , Substâncias Húmicas , Interações Hidrofóbicas e Hidrofílicas , Lignina/análogos & derivados , Lignina/química , Plásticos , Polímeros/química , Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração , Termogravimetria
20.
J Appl Microbiol ; 130(4): 1232-1244, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33025710

RESUMO

AIMS: Microbial induced calcium carbonate precipitation (MICP) is one of the bio-cementation methods for improving granular soils. This study evaluate the feasibility of obtaining a bacterial solution with high optical density and urease activity by an inexpensive corn steep liquor (CSL) medium in non-sterile conditions in order to achieve sand improvement. METHODS AND RESULTS: Corn steep liquor media with different concentrations (different dilution rates) were prepared and, without any autoclaving (non-sterile conditions), different percentage of the inoculum solutions were added to them and incubated. Effect of inoculum solution percentage and CSL dilution rates on specifications of bacterial solution was evaluated. Urease activity and scanning electron microscope (SEM) and X-Ray Diffraction (XRD) were used to efficiency of CLS media in sand improvement. The considerable urease activity was measured as 5·7 mS cm-1  min-1 using nonsterile CLS. By using CYNU (CSL-Yeast extract-NH4Cl-Urea) bacterial solution, the urease activity of 5·5 mS cm-1  min-1 for the OD600 (optical density at 600 nm) of 1·88 and, consequently, specific urease activity of 2·93 mS cm-1  min-1  OD600 -1 was obtained. The highest unconfined compressive strength (811 kPa) was obtained for the CYNU. XRD revealed new calcite peaks next to the quartz peaks. CONCLUSIONS: Production of inexpensive bacterial solution using diluted CSL as the inexpensive, effective and powerful culture media for Sporosarcina pasteurii cultivation in nonsterile conditions, allows geotechnical and biotechnological engineers to use MICP technology more widely in land improvement and field-scale bio-cementation and bioremediation projects. SIGNIFICANCE AND IMPACT OF THE STUDY: Obtaining high urease activity of inexpensive microbial solution using diluted CSL as the culture medium in nonsterile conditions, as the unique results of this study, can be significant in the field of bioremediation studies using MICP.


Assuntos
Areia/química , Sporosarcina/crescimento & desenvolvimento , Zea mays/química , Biodegradação Ambiental , Biomineralização , Carbonato de Cálcio/análise , Carbonato de Cálcio/metabolismo , Força Compressiva , Análise Custo-Benefício , Meios de Cultura/química , Areia/microbiologia , Sporosarcina/metabolismo , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...